Abstract

A theoretical model is developed here in tandem with single-beam laser trapping experiments to elucidate the effects of the numerous thermal, optical, and geometric parameters that affect internal temperature distributions within finite nanowires (NWs) during laser irradiation. Analytical solutions to the heat-transfer equation are presented to predict internal temperature distributions within individual nanowires based on numerical calculations of the internal electromagnetic heat source. Single-beam laser-trapping experiments are performed to measure photothermal heating of silicon NWs. Silicon has not been considered to date for photothermal heating applications due to its indirect band gap and low absorption coefficient in the near-infrared tissue-transparency window. We also show here that ion implantation may be used to increase the optical absorption of silicon nanowires (SiNWs), leading to significant heating to temperatures greater than 42 °C in an aqueous environment at an irradiance of 3 MW/cm2...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.