Abstract

The present study aims to develop a compact experimental facility to trap solar energy. Line focusing concentrators, i.e., Fresnel lens and secondary reflectors, are coupled to enhance the photothermal conversion efficiency. Two types of receiver tubes are used, a plain copper tube and an evacuated glass tube embedded with a copper tube. Surfactant-free multiwalled carbon nanotubes–Therminol55 nanofluid with concentrations of 25, 50, 75, and 100 ppm are used in this study. The characterization of the nanoparticles and nanofluids is presented. In the visible range, a maximum absorbance and extinction coefficient of 0.75 and 1.7 cm−1 are obtained for 100 ppm concentration. The thermal conductivity is also enhanced by 6.29% compared to base fluid. A maximum fluid temperature of 78.15 and 89.58 °C is observed for plain receiver tube and receiver tube in evacuated space, respectively, and the corresponding efficiencies are 12.65 and 17.36%

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.