Abstract
The photopyroelectric method in a noncontact configuration (excitation source: diode laser at 1.94 μm) is capable of yielding information on the water content of a textile sample and on its influence on the thermal properties. A one-dimensional theoretical model was developed assuming the sample thermally homogeneous and taking into account the optical absorption and scattering. The experimental setup designed for this purpose included an excitation source resonant with water absorption, signal and data processing units and cells for conditioning the samples. We optimized the experimental conditions in order to identify the parameters related to the water content in the sample, and to monitor the dynamics of the process. The effective thermal conductivity and the volume specific heat were determined at different moments of time while the sample was taking up water. Two thermal parameters related to the comfort of a fabric were also calculated: the thermal effusivity and the thermal resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.