Abstract

Along with the third-order nonlinear susceptibility, χ (3), the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter for conjugated polymers used in active integrated optical devices. Photothermal deflection spectroscopy (PDS) is an ideal technique for determining the absorption coefficients of thin films of ‘transparent’ materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers, poly(1,4-phenylene-vinylene) (and derivatives) and polydiacetylene-4BCMU, in the spectral region from 0.55 to 3 eV. We find that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1–10 cm −1. In the region below 1 eV, overtones of C-H stretching modes dominate the absorption behavior. We also observe that irradiation of all of these polymers with light above ∼ 2.5 eV produces enhanced absorption below the fundamental edge. In the absence of light, these excitations decay with characteristic times of 10–1000 s and in some cases they may determine the effective IR transparency in the energy range 1.0–1.8 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.