Abstract

Photothermal cantilever excitation provides a fast and easy to implement means to control the deflection of standard atomic force microscopy cantilevers. Minute heat pulses yield deflections on the order of several tens of nanometers or when the deflection is kept constant, forces of several hundreds of piconewton can be applied. In our case these pulses resulted in less than 1 K temperature changes at the sample position. Here we present and characterize the implementation of photothermal actuation for single-molecule force-spectroscopy experiments. When molecules are stretched under force-clamp conditions, fast control cycles that re-establish the pulling force after the rupture of molecular domains are essential for detecting the complete unfolding pattern with high precision. By combining the fast response of photothermal cantilever excitation with a conventional piezoactuator, a fast force-clamp with high accuracy and large working distances is reached. Simple feedback mechanisms and standard cantilever geometries lead to step response times of less than 90 micros, which is more than one order of magnitude faster than those of conventional force-clamp systems that are based only on piezo feedback. We demonstrate the fast and accurate performance of the setup by unfolding a protein construct consisting of one green fluorescent protein and eight surrounding immunoglobulin domains at constant force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.