Abstract

Photocatalysis as one of the future environment technologies has been investigated for decades. Despite great efforts in catalyst engineering, the widely used powder dispersion and photoelectrode systems are still restricted by sluggish interfacial mass transfer and chemical processes. Here we develop a scalable bilayer paper from commercialized TiO2 and carbon nanomaterials, self-supported at gas-liquid-solid interfaces for photothermal-assisted triphase photocatalysis. The photogeneration of reactive oxygen species can be facilitated through fast oxygen diffusion over triphase interfaces, while the interfacial photothermal effect promotes the following free radical reaction for advanced oxidation of phenol. Under full spectrum irradiation, the triphase system shows 13 times higher reaction rate than diphase controlled system, achieving 88.4 % mineralization of high concentration phenol within 90 min full spectrum irradiation. The bilayer paper also exhibits high stability over 40 times cycling experiments and sunlight driven feasibility, showing potentials for large scale photocatalytic applications by being further integrated into a triphase flow reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call