Abstract
Drosophila typically move toward light (phototax positively) when startled. The various species of Drosophila exhibit some variation in their respective mean phototactic behaviors; however, it is not clear to what extent genetically identical individuals within each species behave idiosyncratically. Such behavioral individuality has indeed been observed in laboratory arthropods; however, the neurobiological factors underlying individual-to-individual behavioral differences are unknown. We developed "FlyVac," a high-throughput device for automatically assessing phototaxis in single animals in parallel. We observed surprising variability within every species and strain tested, including identically reared, isogenic strains. In an extreme example, a domesticated strain of Drosophila simulans harbored both strongly photopositive and strongly photonegative individuals. The particular behavior of an individual fly is not heritable and, because it persists for its lifetime, constitutes a model system for elucidating the molecular mechanisms of personality. Although all strains assayed had greater than expected variation (assuming binomial sampling), some had more than others, implying a genetic basis. Using genetics and pharmacology, we identified the metabolite transporter White and white-dependent serotonin as suppressors of phototactic personality. Because we observed behavioral idiosyncrasy in all experimental groups, we suspect it is present in most behaviors of most animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.