Abstract

We carried out a laboratory study to evaluate the sensitivity of phototactic behavior of Daphnia magna to sublethal concentrations of pentachlorophenol (PCP) and copper. More specifically, we determined whether the sensitivity of a D. magna clone to those pollutants is influenced by food quality and the presence of fish kairomones. Test animals were fed either unicellular green algae (Scenedesmus acutus) or fresh baker's yeast (Saccharomyces cerevisiae) and were cultured in the presence or absence of fish kairomones. Four concentrations of PCP (0.4, 0.8, 1.2, and 1.6 mg/L PCP) and one concentration of copper (0.02 mg/L Cu2+) in International Standards Organisation (ISO, Geneva, Switzerland) standard medium were applied in the experiments. Animals were exposed for 3 h to the pollutants prior to the experiments. In the absence of fish kairomones, a strong negative relationship between the phototactic index and nominal sublethal concentrations of PCP was found in animals fed either algae or yeast. The sensitivity of the Daphnia clone to sublethal concentrations of PCP was, however, less clear cut in animals fed yeast than in animals fed algae. The detection limit was 0.4 mg/L PCP with algae as food but was as high as 1.2 mg/L PCP when yeast was used as food. The ability to detect sublethal concentrations of copper and PCP using phototactic behavior was lost when the clones were cultured in the presence of fish kairomones. At a concentration of 0.02 mg/L Cu2+ and in the absence of fish kairomones, the D. magna clone tested became significantly less positively phototactic than in the control treatment regardless of the quality of the food used to culture the test animals. These results suggest that assays using the phototactic behavior of Daphnia to monitor water quality should use genetically stable (clonal) material, positively phototactic, and insensitive to the presence of fish kairomones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.