Abstract

Arabidopsis thaliana leaves were examined in short-term (1 h) and long-term (10 h) irradiance experiments involving growth, saturating and excess light. Changes in photosynthetic and chlorophyll fluorescence parameters and in populations of functional photosystem II (PSII) centers were independently measured. Xanthophyll pigments, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-binding sites, the amounts of D1 protein, and the rates of D1 protein synthesis were determined. These comprehensive studies revealed that under growth or light-saturating conditions, photosynthetic parameters remained largely unaltered. Photoprotection occurred at light saturation indicated by a dark-reversible increase in non-photochemical quenching accompanied by a 5-fold increase in antheraxanthin and zeaxanthin. No consistent change in the concentrations of functional PSII centers, DCMU-binding sites, or D1 protein pool size occurred. D1 protein synthesis was rapid. In excess irradiance, quantum yield of O2 evolution and the efficiency of PSII were reduced, associated with a 15- to 20-fold increase in antheraxanthin and zeaxanthin and a sustained increase in nonphotochemical quenching. A decrease in functional PSII center concentration occurred, followed by a decline in the concentration of D1 protein; the latter, however, was not matched by a decrease in DCMU-binding sites. In the most extreme treatments, DCMU-binding site concentration remained 2 times greater than the concentration of D1 protein recognized by antibodies. D1 protein synthesis rates remained unaltered at excess irradiances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.