Abstract

Cyanobacteria of the Synechococcus and Prochlorococcus genera are important contributors to photosynthetic productivity in the open oceans. Recently, core photosystem II (PSII) genes were identified in cyanophages and proposed to function in photosynthesis and in increasing viral fitness by supplementing the host production of these proteins. Here we show evidence for the presence of photosystem I (PSI) genes in the genomes of viruses that infect these marine cyanobacteria, using pre-existing metagenomic data from the global ocean sampling expedition as well as from viral biomes. The seven cyanobacterial core PSI genes identified in this study, psaA, B, C, D, E, K and a unique J and F fusion, form a cluster in cyanophage genomes, suggestive of selection for a distinct function in the virus life cycle. The existence of this PSI cluster was confirmed with overlapping and long polymerase chain reaction on environmental DNA from the Northern Line Islands. Potentially, the seven proteins encoded by the viral genes are sufficient to form an intact monomeric PSI complex. Projection of viral predicted peptides on the cyanobacterial PSI crystal structure suggested that the viral-PSI components might provide a unique way of funnelling reducing power from respiratory and other electron transfer chains to the PSI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.