Abstract

In nature, biological nitrogen fixation is accomplished through the π-back-bonding mechanism of nitrogenase, which poses significant challenges for mimic artificial systems, thanks to the activation barrier associated with the N≡N bond. Consequently, this motivates us to develop efficient and reusable photocatalysts for artificial nitrogen fixation under mild conditions. We employ a charge-assisted self-assembly process toward encapsulating one polyoxometalate (POM) within a dehydrated Zr-based metal-organic framework (d-UiO-66) exhibiting nitrogen photofixation activities, thereby constructing an enzyme-mimicking photocatalyst. The dehydration of d-UiO-66 is favorable for facilitating nitrogen chemisorption and activation via the unpaired d-orbital electron at the [Zr6O6] cluster. The incorporation of POM guests enhanced the charge separation in the composites, thereby facilitating the transfer of photoexcited electrons into the π* antibonding orbital of chemisorbed N2 for efficient nitrogen fixation. Simultaneously, the catalytic efficiency of SiW9Fe3@d-UiO-66 is enhanced by 9.0 times compared to that of d-UiO-66. Moreover, SiW9Fe3@d-UiO-66 exhibits an apparent quantum efficiency (AQE) of 0.254% at 550 nm. The tactics of "working-in-tandem" achieved by POMs and d-UiO-66 are extremely vital for enhancing artificial ammonia synthesis. This study presents a paradigm for the development of an efficient artificial catalyst for nitrogen photofixation, aiming to mimic the process of biological nitrogen fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call