Abstract

Following the transfer of pea plants grown at low irradiance (60 �mol photons m-2 s-1, 16 h light/8 h dark cycles) to high irradiance (390 �mol photons m-2 s-1), the extents and time courses of the increase in the concentrations of thylakoid membrane components on a chlorophyll basis have been determined. The increase in cytochrome f (~ 70%) and plastoquinone (~ 50%) contents occurred with no noticeable lag phase. The increase in photosystem Il reaction centres (PS II, ~ 35%) and ATP synthetase (~ 90%) occurred possibly with a lag period of 1-2 days. In contrast, there was no significant increase in the concentration of P700 (reaction centre) of PS I complex. The concentration of PS II reaction centres measured by atrazine-binding exceeded that from the O2 yield per single-turnover flash by a factor of 1.17 (compared with the expected value of 1.14); this contrasts with the factor of 1.8 obtained by P. A. Jursinic and R. Dennenberg [Arch. Biochem. Biophys. (1985) 241, 540-9]. It is suggested that both methods are equivalent for the determination of PS II reaction centres in active chloroplasts. The stoichiometry of PS II : cyt f: PS I was highly flexible, and not fixed at 1 : 1 : 1. We obtained the stoichiometries of 1.25 : 0.7 : 1.0 for low-light pea chloroplasts and 1.7 : 1.25 : 1.0 for chloroplasts in pea plants that had been transferred to high light for about 10 days, demonstrating the dynamic nature of thylakoid composition and function. In the first 2 days after transferring low light pea plants to high light, the time course of the increase in CO2- and light-saturated rate of leaf photosynthesis corresponded better with that of cyt f and plastoquinone than that of other chloroplast components examined. This suggests that, during the transition period, the relatively prompt increase of cyt b/f and plastoquinone plays a part in enhancing the CO2- and light-saturated rate of leaf photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.