Abstract
ABSTRACT The impacts of climate change, in particular via elevated temperature and atmospheric CO2 concentrations, cause differential photosynthetic responses between native and invasive alien plants, often resulting in varying magnitudes of plant growth and productivity. This study investigated variations in photosynthetic responses of an invasive alien Acacia species and two successional groups of tropical heath forest species: early secondary (Bucha nania arborescens and Dillenia suffruticosa) and secondary (Calophyllum inophyllum and Ploiarium alternifolium) groups at elevated temperature (25 to 30°C) and CO2 levels (400 to 700 ppm). Invasive A. mangium appears better adapted to higher temperature and CO2. High temperature improved CO2 assimilation of A. mangium compared to heath species, which was attributed to increased transpiration rate and stomatal conductance but decreased water-use efficiency. Photosynthetic responses showed no differences in early secondary species at elevated temperature and CO2 but invasive A. mangium and P. alternifolium were stimulated by elevated CO2. The greater maximum net photosynthesis of A. mangium coincided with lower light compensation point and electron transport rate for RuBP regeneration, to a certain extent. Findings provide insights into possible underlying ecophysiological mechanisms contributing to the invasion success of Acacias in degraded tropical heath forests in response to future climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.