Abstract
The crustose coralline algae (CCA) play an important role building carbonate habitats and enhancing species diversity in rocky shores, rhodolith beds and coral-algal reefs. Though worldwide distributed some taxonomic groups were proved to show light and temperature boundaries. Nevertheless, little is known about the biological limits of CCA recruits and photosynthetic responses in a climate change environment. In this way, experimental studies are essential to identify their optimal conditions development. The aim of the study was to test ideal environmental conditions for CCA recruits from an upwelling area to verify Fv/Fm response patterns as an indicator of photosynthetic performance. Artificial disks were fixed on a rocky shore to provide substrate for CCA recruitments and then moved to be tested in a flow-through system. The CCA tested were species of the Genus Lithophyllum and experiments were performed with CCA exposed to different levels of light, temperature and current flow rates. The photosystem II function, measured by chlorophyll a fluorescence (Fv/Fm), was used as an indicator of potential photosynthetic electron transport. There was an interaction between light intensity, flow rate and temperature. Low light intensity, high temperature and fast flow rate (20 μmol m−2. s−1; 19 and 24 °C; 0.09 m s−1 respectively) provided optimal conditions for CCA recruits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.