Abstract

Though birch and alder are the common pioneer tree species which dominate in northeast Asia, little is known about the effects of the predicted increase in atmospheric CO2 concentrations ([CO2]) upon their photosynthesis in field conditions. To investigate this, we grew 2-year-old saplings of three Betulaceae species (Betula platyphylla var. japonica Hara, Betula maximowicziana Regel, and Alnus hirsuta Turcz) for 2 years in a free air CO2 enrichment system in northern Japan. Since the effect of high [CO2] is known to depend on soil conditions, we evaluated the responses in two soils which are widely distributed in northern Japan: infertile and immature volcanic ash (VA) soil, and fertile brown forest (BF) soil. For B. platyphylla, photosynthetic down-regulation occurred in both soils, but for B. maximowicziana, down-regulation occurred only in VA soil. The explanation is reduced nitrogen and Rubisco content in the leaf. For A. hirsuta, down-regulation occurred only in BF soil because of the accumulation of starch in foliage, which restricts CO2 diffusion inside the chloroplast. The higher photosynthetic rate of A. hirsuta in infertile VA soil could be due to the sink for photosynthates in the N2-fixing symbiont. These three species are all able to down-regulate at high [CO2]. However, it is possible that A. hirsuta would dominate in VA soil and B. maximowicziana in BF soil in the early stages of forest succession in a CO2-enhanced world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call