Abstract

Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). In a common garden experiment, saplings originating from two provenances (wetter KA and drier SB provenances) were exposed to regular watering and drought in interaction with moderate and high phosphorus concentrations in the growing substrate. Results indicated that drought significantly reduced pre-dawn leaf water potential (ΨPD), net photosynthesis (Anet), stomatal conductance (gs) and photosynthetic performance index (PIabs) in both species. Phosphorus fertilization had a negative impact on Anet and PIabs, thus exacerbating the negative impact of drought on photosynthetic efficiency, potentially due to excessive phosphorus absorption by saplings. Provenance differences were notable, with the KA provenance showing better drought resilience. This research highlights the complexity of nutrient-drought interactions and underscores the need for cautious application of fertilization strategies in reforestation efforts under changing climatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.