Abstract

We examined the photosynthesis response to osmotic stress in three climber plant species, Pharbitis nil (Linn.) Choisy, Lonicera japonica Thunb, and Parthenocissus tricuspidata (Sieb.et Zucc.) Planch. All climber plants were exposed to osmotic stress induced by polyethylene glycol (PEG) 6000 at 4 levels (slight, moderate, severe osmotic and the control) for 30 days. Photosynthesis response was determined by measuring leaf photosynthesis, chlorophyll fluorescence, carbonic anhydrase activity and stable carbon isotope ratios. P. nil maintained high photosynthetic activity under long-term moderate osmotic stress due to both stable photosystem II photochemical efficiency and high carbonic anhydrase activity. L. japonica maintained high photosynthetic activity under long-term moderate stress due to high carbonic anhydrase activity rather than photosystem II photochemical efficiency. P. tricuspidata tolerated only short-term moderate osmotic stress and long-term slight osmotic stress because its response was mainly stomatal limitation, with the lowest photosynthetic activity and hardly any carbonic anhydrase activity. Carbonic anhydrase activity was inversely correlated with stable carbon isotope ratios. The regulation by carbonic anhydrase was probably the reason for P. nil and L. japonica to tolerate long-term moderate osmotic stress. The selection on the species should consider the differential adaptation mechanism to osmotic stress during the development of drought-resistant plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.