Abstract

ABSTRACTSolar ultraviolet radiation (UVA + UVB) impairs photosynthesis in marine algae. Canopy blades of the giant kelp Macrocystis pyrifera (L.) C. Agardh are exposed to high levels of solar UV in the field. To determine the effects of UV radiation on photosynthesis in the giant kelp and to identify sites of UV damage, O2 evolution, reaction center organization, light harvesting, and energy transfer efficiency were measured in canopy blades that had been exposed to elevated levels of UV in the laboratory. UV treatment reduced both the light‐saturated rate and the light‐limited rate of photosynthesis by 50% but produced no significant change in the rate of dark respiration. A significant impairment of photosystem II (PSII) reaction center function was observed, suggesting that PSII is a major site of damage in chromophytes. Reduced quantum efficiency of photosynthesis and loss of energy transfer from light‐harvesting pigments (fucoxanthin, chlorophyll a, and chlorophyll c) to PSII indicate that the major light‐harvesting complex of M. pyrifera, the fucoxanthin‐chlorophyll protein complex (FCPC), was another site of UV damage. These measures provide the first evidence of a direct effect of UV radiation on specific sites in the photosynthetic apparatus of chromophytes and indicate that in situ fluorescence excitation analysis may be a simple means to detect UV stress in algae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.