Abstract

The photosynthetic reaction centre (RC) from Rhodobacter sphaeroides has been studied for use in biohybrid solar cells. Much of the previous work has focussed on improving photocurrent generation by loading the electrode surface with many copies of the protein resulting in multilayers. The primary disadvantage with this approach is the random orientation of proteins, with some supposedly oriented properly. We used RCs with Cys for covalent attachment to a gold electrode and for proper orientation. Areas of bare electrode surface and RCs bound non-specifically (i.e. not bound via the Cys) were competitively displaced by an insulating, non-redox layer of mercaptohexanol (MCH). The adsorbed monolayer of RCs was imaged using atomic force microscopy to detail the distribution of RCs on the gold surface for surfaces prepared with different RC deposition concentrations. Photocurrents were measured for all RC modified surfaces using a LED modulation method which enabled measurement of photocurrent in the presence of large faradaic currents from the sacrificial reactant (hydroquinone) at a variety of applied potentials.[1] The photocurrents generated from a monolayer composed of RCs and MCH resulted in consistent photocurrent currents. which enabled modeling of the photocurrent generation using the Marcus-Hush-Chidsey theory to extract a reorganization energy for this process. Multilayers of adsorbed RCs were distinctly different and revealed that the local environment in which the RCs are embedded significantly influenced photocurrent generation.[1] Jun, D.; Beatty, J. T.; Bizzotto, D. Highly Sensitive Method to Isolate Photocurrent Signals From Large Background Redox Currents on Protein‐Modified Electrodes. ChemElectroChem 2019, 6 (11), 2870–2875.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call