Abstract
The virescent character is a genetic variant in pigmentation characterized by a delay in greening. Seedlings of the virescent mutants v1, v2, v3, v4, v13, v16, v18, v19 and v26 of maize exhibit chlorosis when grown at low temperature. Chlorotic leaves contain plastids that appear to have been arrested at an early stage of development. The results indicated that V16, V2, V3 and V4 loci control early stages of chloroplast development while V1, V13 and V19 may play a role at the end of development. The mutations in the V18 and V26 loci may control an intermediate step. At the pigment level, the virescent mutants of maize differ widely from analogous mutations existing in other plants. The mutations were characterized by a reduced amount of chlorophyll a and b (up to 100 times in v16) and chlorophyll a/b ratio above normal (up to 13.7 in v16). Lutein content was reduced in all mutants (less than 3% in v16 compared to wild type) but v13, while pigments of the xanthophyll cycle were found at higher levels in v1 and v13 (more than 10 and 90%, respectively). The v2, v3, v4, v16 and v18 mutants that are most depleted in β‐carotene (36 times less in average than wild type) are also deprived in D1 and D2 polypeptides. Moreover, the v2, v3, v4, v16 and v18 mutants characterized by a lower accumulation in lutein are most depleted of light‐harvesting complex II. All mutants possess a functioning, fully reversible, non‐photochemical quenching mechanism. This is most developed in the v13 and v19 mutants (φn = 0.48 and 0.44, respectively). These two mutants also have a relatively high primary photochemical yield for photosystem II and a functioning photosystem I (φp = 0.23 and 0.39, respectively). The most interesting mutant is v13 that shows severe chlorosis and possesses the most effective non‐photochemical quenching mechanism(s), which is thought to provide protection against excess photon absorption by photosystem II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.