Abstract
Macrocystis pyrifera (L.) C. Agardh is a canopy‐forming species that occupies the entire water column. The photosynthetic tissue of this alga is exposed to a broad range of environmental factors, particularly related to light quantity and quality. In the present work, photosynthetic performance, light absorption, pigment composition, and thermal dissipation were measured in blades collected from different depths to characterize the photoacclimation and photoprotection responses of M. pyrifera according to the position of its photosynthetic tissue in the water column. The most important response of M. pyrifera was the enhancement of photoprotection in surface and near‐surface blades. The size of the xanthophyll cycle pigment pool (XC) was correlated to the nonphotochemical quenching (NPQ) of chl a fluorescence capacity of the blades. In surface blades, we detected the highest accumulation of UV‐absorbing compounds, photoprotective carotenoids, ΣXC, and NPQ. These characteristics were important responses that allowed surface blades to present the highest maximum photosynthetic rate and the highest PSII electron transport rate. Therefore, surface blades made the highest contribution to algae production. In contrast, basal blades presented the opposite trend. These blades do not to contribute significantly to photosynthetate production of the whole organism, but they might be important for other functions, like nutrient uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.