Abstract

The leaf water potential, gas exchange and chlorophyll fluorescence were evaluated in five common bean (Phaseolus vulgaris) genotypes A222, A320, BAT477, Carioca and Ouro Negro subjected to moderate water deficit. At the maximum water deficit (10 d of water withholding), the leaf water potential of genotypes A320 and A222 was higher (−0.35 and −0.50 MPa) when compared to the other genotypes (−0.67 to −0.77 MPa). The stomatal conductance and net photosynthetic rate were significantly reduced in all genotypes due to the water deficit. The greater reduction in stomatal conductance of A320 under drought resulted in high intrinsic water use efficiency. Mild water deficit affected the photochemical apparatus in bean genotypes probably by down-regulation since plants did not show photoinhibition. The photochemical apparatus of A222 and A320 genotypes was more sensitive to drought stress, showing reduced apparent electron transport even after the recovery of plant water status. On the other hand, even after 10 d of water withholding, the maximum efficiency of photosystem 2 was not affected, what suggest efficiency of the photoprotection mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call