Abstract

Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) vines were grown in constant conditions for 3 months starting from budbreak to measure relationships between leaf development and photosynthesis during leaf expansion. Leaf area, net photosynthesis and fluorescence were repeatedly measured on the same leaves at regular intervals. At the growth conditions, the vines produced 0.5 leaves per day, with the earliest expanding leaves taking about 40 days and later emerging leaves up to 70 days to expand fully. Maximum leaf area increased up to leaf 9 then declined with later emerging leaves. Photosynthesis and photochemical efficiency depended on nodal position but were both highest in the earliest emerging leaves. Maximum photosynthetic capacity of individual leaves generally occurred in concert with leaves reaching full expansion but high rates of photosynthesis were observed within 10 days after budbreak. The early expanding leaves (positions 4 to 9) contributed up to 50% of the total net shoot carbon acquisition over the study period. Young leaves were also resistant to imposed photoinhibitory stresses. Early emerging leaves on kiwifruit vines appear physiologically well adapted to provide carbon in spring, when the plants are in a negative carbon balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.