Abstract

The vertical profile in leaf photosynthetic capacity was investigated in a terra firme rain forest in central Amazonia. Measurements of photosynthesis were made on leaves at five levels in the canopy, and a model was fitted to describe photosynthetic capacity for each level. In addition, vertical profiles of photosynthetic photon flux density, leaf nitrogen concentration and specific leaf area were measured. The derived parameters for maximum rate of electron transport (J(max)) and maximum rate of carboxylation by Rubisco (V(cmax)) increased significantly with canopy height (P < 0.05). The highest J(max) for a single canopy level was measured at the penultimate canopy level (20 m) and was 103.9 &mgr;mol m(-2) s(-1) +/- 24.2 (SE). The highest V(cmax) per canopy height was recorded at the top canopy level (24 m) and was 42.8 +/- 5.9 &mgr;mol m(-2) s(-1). Values of J(max) and V(cmax) at ground level were 35.8 +/- 3.3 and 20.5 +/- 1.3 &mgr;mol m(-2) s(-1), espectively. The increase in photosynthetic capacity with increasing canopy height was strongly correlated with leaf nitrogen concentration when examined on a leaf area basis, but was only weakly correlated on a mass basis. The correlation on an area basis can be largely explained by the concomitant decrease in specific leaf area with increasing height. Apparent daytime leaf respiration, on an area basis, also increased significantly with canopy height (P < 0.05). We conclude that canopy photosynthetic capacity can be represented as an average vertical profile, perturbations of which may be explained by variations in the environmental variables driving photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.