Abstract

Partitioning of nitrogen among species was determined in a stand of a tall herbaceous community. Total amount of nitrogen in the aboveground biomass was 261 mmol N m-2, of which 92% was in three dominant species (Phragmites, Calamagrostis and Carex) and the rest was in the other eight subordinate species. Higher nitrogen concentrations per unit leaf area (n L) with increasing photosynthetically active photon flux density (PPFD) were observed in all species except for three short species. The changes in n L within species were mainly explained by the different nitrogen concentrations per unit leaf mass, while the differences in n L between species were explained by the different SLM (leaf mass per unit leaf area). Photon absorption per unit leaf nitrogen (Φ N ) was determined for each species. If photosynthetic activity was proportional to photon absorption, Φ N should indicate in situ PNUE (photosynthetic nitrogen use efficiency). High Φ N of Calamagrostis (dominant) resulted from high photon absorption per unit leaf area (Φ area ), whereas high Φ N of Scutellaria (subordinate) resulted from low n L although its Φ area was low. Species with cylinder-like "leaves" (Juncus and Equisetum) had low Φ N , which resulted from their high n L. Light-saturated CO2 exchange rates per unit leaf area (CER) and per unit leaf nitrogen (potential PNUE) were determined in seven species. Species with high CER and high n L (Phragmites, Carex and Juncus) had low potential PNUE, while species with low CER and low n L showed high potential PNUE. NUE (ratio of dry mass production to nitrogen uptake) was approximated as a reciprocal of plant nitrogen concentration. In most species, three measures of nitrogen use efficiency (NUE, Φ N and potential PNUE) showed strong conformity. Nitrogen use efficiency was high in Calamagrostis and Scutellaria, intermediate in Phragmites and relatively low in Carex. Nitrogen use efficiency of subordinate species was as high as or even higher than that of dominant species, which suggests that growth is co-limited by light and nitrogen in the subordinate species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.