Abstract

The use of biogas for grid injection or vehicle fuel requires purification steps to obtain biomethane, process normally called biogas upgrading. The use of microalgae cultures has been proposed as a new alternative for CO2 removal from biogas. Full-scale systems for biogas upgrading using microalgae should be able to deal with natural existing day/night photoperiods. This research evaluated the effect of a light/dark photoperiod on the operation of a photosynthetic biogas upgrading system, at lab-scale conditions. A system based on an open-photobioreactor connected to a mass transfer column was used for that purpose. Using a continuous biogas flow, an upgraded biogas with a CO2 concentration between 2 and 4.5% was obtained throughout light and dark periods. O2 concentrations below 1% in final biogas were observed. Mass balances showed that CO2 desorption was the main process behind CO2 removal. CO2 removal during the dark phase was possible, under the tested conditions, as a result of inorganic carbon desorption from the photobioreactor and accumulation in the liquid phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.