Abstract

Studies of the photosynthetic activity of perennial grass mixtures allow for describing the peculiarities of the formation of perennial grass species forage productivity in the dry steppe zone. The study aimed to evaluate the cumulative effect of perennial cereal and legume grasses as part of complex grass mixtures on photosynthetic activity, productivity, and nutritional value of mowing and grazing phytocenoses. Adapting multicomponent grass created from various species of perennial grasses to the continental climate of the steppe zone of Northern Kazakhstan commenced, capable of resisting biotic and abiotic stresses due to biological characteristics and positively influencing other species in the phytocenoses. The study determined photosynthetic activity, the yield of green and dry masses, dry matter content, crude protein, metabolizable energy of natural pasture, single-species sowing of awnless brome, and multicomponent grass mixtures. The communal herbage obtained as a result of the study contained a large amount of crude protein (20.6%–24.7%), crude fat (2.0%–4.2%), crude fiber (18.0%–22.7%), crude ash (7.1%–7.7%), and nitrogen-free extractive substances (35.0%– 44.1%). The results further enunciated that the perennial grass herbage in question had an average photosynthetic potential of 1,450,330 m2×day ha-1 in single-species awnless brome crops, while in grass mixtures the said potential was higher, ranging from 1,510,250 to 1,815,250 m2×day ha-1. The authors concluded that it was necessary to create mowing and grazing fields composed of productive and stable perennial grass mixtures on degraded pasture lands to increase available forage for farm animals and improve the system's resistance to adverse conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.