Abstract

Photosynthetic processes in the leaf lamina and midribs of Plantago media were investigated using plants grown in high light (HL) or low light (LL) conditions. The fluorescence parameters, which indicate photochemical/photosynthetic activity, were different in HL and LL grown plants, but no major differences between lamina and midribs were found. An OJIP test (chlorophyll a fluorescence transient induction) of LL grown plants, indicative of the chloroplast electron transport chain, also showed both tissues to be similar. In HL plants, a partial blockage of electron flow between QA (the primary plastoquinone electron acceptor of PSII) and QB (the secondary plastoquinone acceptor of PSII) was found, and this was less visible in midribs. The effective dissipation of quantum energy per reaction center (DI0/RC) was similar in both tissues of HL grown plants, while in the midribs of LL leaves, this process seemed to be less effective. Measurements of 13C discrimination showed that the midrib tissues of LL and HL leaves effectively used β-carboxylation products to accumulate their biomass. Thus, the well protected activity of electron transport in midribs with their limited capacity to fix CO2 from the air may indicate the involvement of this tissue in β-carboxylation, transport or signaling. Carbon accumulated in roots showed a lower 13C discrimination value (more negative) than the values observed in lamina. This could indicate that roots are supplied with assimilates mostly during the light phase of the day cycle with intensive C3 photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.