Abstract

Regulatory mechanism in PHB [poly-(hydroxybutyrate)] accumulation by cyanobacteria, especially by a thermophilic isolate, Synechococcus MA19 was reviewed in comparison with a genetically engineered strain. The strain, MA19 accumulates PHB under nitrogen starved and photoautotrophic conditions (MA19-N). Little PHB synthase activity was detected in crude extracts from the cells grown in nitrogen sufficient conditions (MA19+N). The activity was detected exclusively in membrane fractions from MA19+N. The change of the enzyme activity was insensitive to chloramphenicol, which suggests post-translational activation. In vitro, acetyl phosphate activated PHB synthase in membrane fractions from MA19+N, and the extent of activation depended on the concentration of acetyl phosphate. Phosphotransacetylase which catalyzes the conversion of acetyl-CoA to acetyl phosphate was detected in crude extracts from MA19-N but not in those from MA19+N. These results suggested that intracellular acetyl phosphate concentration could be controlled, depending on C–N balance and intracellular acetyl-CoA concentration. On the contrary, in genetically-engineered cyanobacterium (transformant with PHB synthesizing genes from Ralstonia eutropha), it did not seem to be PHB synthase but acetyl-CoA flux that limits PHB synthesis. The closer association of PHB granules with thylakoid membranes in MA19 is suggested than that in the genetically-engineered cyanobacterium, which may reflect the difference of distribution of PHB synthase. Transposon-mutagenesis was used to acquire mutants of its altered PHB regulatory mechanism. PHA production by cyanobacteria was considered from the aspects of photobioreactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call