Abstract

Tropical soils are often characterised by low phosphorus availability and tropical forest trees typically exhibit lower area-based rates of photosynthesis (Aa) for a given area-based leaf nitrogen concentration ([N]a) compared with plants growing in higher-latitude, N-limited ecosystems. Nevertheless, to date, very few studies have assessed the effects of P deprivation per se on Aa⟷[N]a relationships in tropical trees. Our study investigated the effect of reduced soil P availability on light-saturated Aa and related leaf traits of seven Australian tropical tree species. We addressed the following questions: (1) Do contrasting species exhibit inherent differences in nutrient partitioning and morphology? (2) Does P deprivation lead to a change in the nature of the Aa⟷[N]a relationship? (3) Does P deprivation lead to an alteration in leaf nitrogen levels or N allocation within the leaf? Applying a mixed effects model, we found that for these Australian tropical tree species, removal of P from the nutrient solution decreased area-based photosynthetic capacity (Amax,a) by 18% and reduced the slope of the Amax,a⟷[N]a relationship and differences among species accounted for around 30% of response variation. Despite greater N allocation to chlorophyll, photosynthetic N use efficiency was significantly reduced in low-P plants. Collectively, our results support the view that low soil P availability can alter photosynthesis-nitrogen relationships in tropical trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call