Abstract
We measured net photosynthesis, leaf conductance, xylem water potential, and growth of Pinus strobus L. seedlings two years after planting on two clear-cut and burned sites in the southern Appalachians. Multiple regression analysis was used to relate seedling net photosynthesis to vapor pressure deficit, seedling crown temperature, photosynthetically active radiation (PAR), needle N, xylem water potential, and soil water, and to relate seedling size and growth to physiological measurements (average net photosynthesis, leaf conductance, and cumulative xylem water potential), soil water, needle N, seedling temperature, and PAR. Seedling net photosynthesis was significantly related to vapor pressure deficit, midday water potential, crown temperature, and PAR (r(2) = 0.70) early in the growing season (May 1992) with vapor pressure deficit alone explaining 42% of the variation. As neighboring vegetation developed, light became more limiting and significantly reduced seedling net photosynthesis later in the growing season (July, August, and September). Final seedling diameter was significantly related to competitor biomass, average photosynthetic rate, and needle N (r(2) = 0.68).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.