Abstract

In this review, we discuss our recent work on modelling biological pigment-protein complexes, such as the Fenna-Matthews-Olson complex and light-harvesting complex-II, to explain their electronic energy transport properties. In particular, we highlight how a network-based analysis approach, where the light-absorbing pigments are treated as a network of interconnected nodes, can provide a qualitative picture of quantum dynamic energy transport. With this in mind, we demonstrate how other properties such as robustness to environmental changes can be assessed in a simple and computationally tractable manner. Such analyses could prove useful for the design of artificial energy transport networks such as those which might find application in solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.