Abstract

In this review, we discuss our recent work on modelling biological pigment-protein complexes, such as the Fenna-Matthews-Olson complex and light-harvesting complex-II, to explain their electronic energy transport properties. In particular, we highlight how a network-based analysis approach, where the light-absorbing pigments are treated as a network of interconnected nodes, can provide a qualitative picture of quantum dynamic energy transport. With this in mind, we demonstrate how other properties such as robustness to environmental changes can be assessed in a simple and computationally tractable manner. Such analyses could prove useful for the design of artificial energy transport networks such as those which might find application in solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call