Abstract

Dwarf Water Lilies (Nymphoides aquatica (J.F. Gmel) Kuntze have floating and submerged leaves. Some submerged aquatic vascular plants have a form of CAM (Crassulacean Acid Metabolism) called Submerged Aquatic Macrophyte (SAM) metabolism. Blue-diode based PAM technology was used to measure the Photosynthetic Oxygen Evolution Rate (POER: 1O2 ≡ 4e– ). Optimum Irradiance (Eopt), maximum POER (POERmax) and quantum efficiency (α0) all vary on a diurnal cycle. The shape of the POER vs. E curves is different in seedling, submerged and surface leaves. Both Eopt and POERmax are very low in seedling leaves (Eopt ≈ 104 μmol photon m–2 s–1, PPFD; POERmax ≈ 4.95 µmol O2 g–1 Chl a s–1), intermediate in mature submerged leaves (Eopt ≈ 419 µmol photon m–2 s–1 PPFD, POERmax ≈ 38.1 µmol O2 g–1 Chl a s–1) and very high in surface leaves (Eopt ≈ 923 µmol photon m–2 s–1 PPFD, POERmax ≈ 76.1 µmol O2 g–1 Chl a s–1). Leaf titratable acid (C4 acid pool) is too small (≈20 to 50 mol H+ m–3) to support substantial SAM metabolism. Gross daily photosynthesis of surface leaves is ≈3.71 g C m–2 d–1 in full sun and as much as 1.4 gC m–2 d–1 in shaded submerged leaves. There is midday inhibition of photosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.