Abstract

Partitioning of light energy into several pathways and its relation to photosynthesis were examined in a shade-demanding species Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng grown along a light gradient. In fully light-induced leaves, the actual efficiency of PSII photochemistry (ΔF/Fm'), electron transport rate (ETR), non-photochemical quenching (NPQ) and photochemical quenching (qP) were lower in low-light-grown plants; this was also the case in fully dark-adapted leaves under a simulated sunfleck. In response to varied light intensity, high-light-grown plants showed greater quantum yields of light-dependent non-photochemical quenching (ΦNPQ) and PSII photochemistry (ΦPSII) and smaller quantum yields of fluorescence and constitutive thermal dissipation (Φf,d). Under the simulated sunfleck, high-light-grown plants showed greater ΦPSII and smaller Φf,d. There were positive relationships between net photosynthesis (Anet) and ΦNPQ+f,d and negative relationships between Anet and ΦPSII in fully light-induced leaves; negative correlations of Anet with ΦNPQ+f,d and positive correlations of Anet with ΦPSII were observed in fully dark-adapted leaves. In addition, more nitrogen was partitioned to light-harvesting components in low-light-grown plants, whereas leaf morphology and anatomy facilitate reducing light capture in high-light-grown plants. The pool of xanthophyll pigments and the de-epoxidation state was greater in high-light-grown plants. Antioxidant defence was elevated by increased growth irradiance. Overall, the evidences from P. notoginseng suggest that in high-light-grown shade-demanding plants irradiated by high light more electrons were consumed by non-net carboxylative processes that activate the component of NPQ, that low-light-grown plants correspondingly protect the photosynthetic apparatus against photodamage by reducing the efficiency of PSII photochemistry under high light illumination, and that during the photosynthetic induction, the ΔpH-dependent (qE) component of NPQ might dominate photoprotection, but the NPQ also depresses the enhancement of photosynthesis via competition for light energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.