Abstract

Tomato plants were grown in peat bags in greenhouse to examine the effects of variation of the nutrient solution electrical conductivity (EC) and substrate water potential (Ψsub) on photosynthesis in leaves, fruits, stem, and petioles. EC of the nutrient solution delivered to peat bags varied between 1 to 4 dS·m–1 with Ψsub of either –5 kPa or –9 kPa as the setpoint for starting the irrigation. The EC variation was adjusted by a computer system according to potential evapotranspiration. Gross photosynthetic capacity (PC) decreased as the leaf age developed. PC in the 10th, 15th and 18th leaves from the top was only 76%, 37%, and 18% of PC in the 5th leaf, respectively. However, low quantum use efficiency (QUE) was only observed in the 18th leaf and low dark respiration (RD) was only in 15th and 18th leaves. Net photosynthesis (PN) was only observed in young fruits (≈10 g FW) or young petioles and no PN was observed in large fruits (50 g or more FW) and stems. Both PC and RD were lower in older fruits and petioles or in the lower part of the stem compared to the younger ones or upper parts. EC variation increased PC, QUE, and RD in most parts. Low Ψsub increased RD in most parts and decreased PC in fruits, stem, and petioles. It is suggested that EC variation increased plant physiological activity of tomato and low Ψsub increased carbon consumption, although it was not severe enough to depress leaf PC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call