Abstract

Photosystem I electron transport activity has been found to be considerably higher in a decaploid tall fescue (Festuca arundinacea Schreb.) genotype as compared to a common hexaploid genotype. The decaploid genotype also displayed a higher photosystem whole chain (Photosystem II plus Photosystem I uncoupled) activity, suggesting a connection between polyploidy and increased electron transport activity. However, when a polyploidy series of tall fescue, ranging from diploid to decaploid with several different genetic isolates at each ploidy level, was examined in natural growth conditions, no effect of increasing genome content on electron transport and photophosphorylation was found. These results suggest that a gene component of one of the genomes involved may be responsible for the increased activity rather than simply the total chromosome content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call