Abstract

Rhamnus caroliniana Walt. (carolina buckthorn or indian cherry) is an attractive small tree or shrub found in diverse habitats in the United States. Because the species occurs in both mesic and xeric soils, we questioned whether selections of carolina buckthorn could be marketed as new nursery crops resistant to both drought and flooding. Our first objective was to characterize how soil water affects growth and gas exchange of carolina buckthorn. We studied potted plants subjected to soil moistures that ranged from complete submersion of the root zone to severe drought (7% soil water by volume). The maximal photosynthetic rate occurred at 27% soil water content, and complete submersion killed plants. Our second objective was to compare responses of carolina buckthorn to those of the invasive common buckthorn (Rhamnus cathartica L.) when potted plants were treated with partial flooding of root zones and drought. Carolina buckthorn resisted deleterious effects of partial flooding. In contrast, leaves of common buckthorn became epinastic, and rates of photosynthesis were low (2.14 μmol CO2/m2/s) after 17 days of treatment. Mean photosynthesis of common buckthorn increased to 5.52 μmol CO2/m2/s, a rate similar to that of carolina buckthorn, after 55 days of treatment. Drought reduced net photosynthesis by 52% and 68%, respectively, for carolina buckthorn and common buckthorn relative to rates of plants in the control treatment. We conclude that carolina buckthorn is capable of maintaining carbon fixation and growth over a wide range of soil water contents, and unlike common buckthorn, is not dependent upon morphological, anatomical, or physiological adjustments to optimize growth and net photosynthesis in extremely wet soil. Use of carolina buckthorn as an ornamental is warranted if invasiveness and other potential problems with the species are not identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call