Abstract

The characteristics of photosynthetic gas exchange, chlorophyll a fluorescence, and xanthophyll cycle pigments during flag leaf senescence of field-grown wheat plants were investigated. With senescence progressing, the light-saturated net CO 2 assimilation rate expressed either on a basis of leaf area or chlorophyll decreased significantly. The apparent quantum yield of net photosynthesis decreased when expressed on a leaf area basis but increased when expressed on a chlorophyll basis. The maximal efficiency of PSII photochemistry decreased very little while actual PSII efficiency, photochemical quenching, and the efficiency of excitation capture by open PSII centers decreased considerably. At the same time, non-photochemical quenching increased significantly. A substantial decrease in the contents of violaxanthin and zeaxanthin, but a slight decrease in the content of antheraxanthin were observed. However, the de-epoxidation status of the xanthophyll cycle was positively correlated with progressive senescence. This increase was due mainly to a smaller decrease in zeaxanthin than in violaxanthin. Our results suggest that PSII apparatus remained functional, but a down-regulation of PSII occurred under the steady state of photosynthesis in senescent flag leaves. Such a down-regulation was associated with the closure of PSII centers and an enhanced xanthophyll cycle-related thermal dissipation in the PSII antennae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.