Abstract

Roughly 240 million years ago (Ma), scleractinian corals rapidly expanded and diversified across shallow marine environments. The main driver behind this evolution is uncertain, but the ecological success of modern reef-building corals is attributed to their nutritional symbiosis with photosynthesizing dinoflagellate algae. We show that a suite of exceptionally preserved Late Triassic (ca. 212 Ma) coral skeletons from Antalya (Turkey) have microstructures, carbonate 13C/12C and 18O/16O, and intracrystalline skeletal organic matter 15N/14N all indicating symbiosis. This includes species with growth forms conventionally considered asymbiotic. The nitrogen isotopes further suggest that their Tethys Sea habitat was a nutrient-poor, low-productivity marine environment in which photosymbiosis would be highly advantageous. Thus, coral-dinoflagellate symbiosis was likely a key driver in the evolution and expansion of shallow-water scleractinians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.