Abstract

The photo- and thermally induced switching of well-ordered molecular arrays of free-standing functional groups, formed by self-assembly on Au surfaces, were studied by photoelectrochemical methods (cyclic voltammetry, chronoamperometry) and surface plasmon resonance spectroscopy. These molecular adlayers exhibit azobenzene functions mounted vertically on the surface via molecular platforms on the basis of triazatriangulenium. Detailed quantitative studies of the switching kinetics revealed that the photoinduced trans–cis isomerization of the azobenzene groups in these adlayers proceeds very fast and highly reversible. Cis–trans backisomerization by thermal relaxation occurs surprisingly 4–5 orders of magnitude faster than in solution. A rapid thermal cis–trans relaxation that dominates over the photoinduced processes is also supported by the pronounced increase of the cis fraction in the adlayers with irradiation intensity and the weak dependence of the isomerization time constants on the intensity. In complementary density functional theory calculations of the cis isomer on a Au cluster, no significant electron density depletion of the azo moiety, but strong electronic coupling of the switchable group with the Au substrate, were found. We propose that the latter leads to a spin exchange between conduction electrons in the metal and the azo moiety, enabling a relaxation mechanism that is forbidden for the free molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.