Abstract

Nitrosyl metal complexes (M-NO), in which nitrosyl ligands are coordinated to transition-metal ions, have been studied from the viewpoints of physiological activity, catalytic activity, and photosensitivity. The structural flexibility and electric polarization of the nitrosyl ligand are attractive characteristics. Herein we show a photoswitchable nonlinear-optical (NLO) crystal based on a dysprosium-iron nitrosyl assembly. This crystal is composed of a one-dimensional chain structure in the polar Pna21 space group. Because of spontaneous electric polarization, it exhibits a NLO effect of second harmonic generation (SHG). The SHG signal reversibly changes by alternate irradiation with 473 and 804 nm laser lights. The observed photoreversible switching effect on SHG is caused by photoinduced linkage isomerization of the metal nitrosyl sites, i.e., M-N+═O ↔ M-O═N+. Such an optically switchable NLO crystal should be useful for optical devices such as optical filters and optical shutters as well as probes in SHG microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.