Abstract
Studies of complex systems and emerging properties to mimic biosystems are at the forefront of chemical research. Dynamic multistep cascades, especially those exhibiting allosteric regulation, are challenging. Herein, we demonstrate a versatile platform of photoswitchable covalent cascades toward remote and bidirectional control of reversible covalent bonds and ensuing assemblies. The relay of a photochromic switch, keto-enol equilibrium, and ring-chain equilibrium allows light-mediated reversible allosteric structural changes. The accompanying distinct reactivity further enables photoswitchable dynamic covalent bonding and release of substrates bidirectionally through alternating two wavelengths of light, essentially realizing light-mediated signaling cycles. The downfall of energy by covalent bond formation/scission upon photochemical reactions offers the driving force for the controlled direction of the cascade. To show the molecular diversity, photoswitchable on-demand assembly/disassembly of covalent polymers, including structurally reconfigurable polymers, was realized. This work achieves photoswitchable allosteric regulation of covalent architectures within dynamic multistep cascades, which has rarely been reported before. The results resemble allosteric control within biological signaling networks and should set the stage for many endeavors, such as dynamic assemblies, molecular motors, responsive polymers, and intelligent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.