Abstract

AbstractRecently, photochromic derivatives of nucleobases have drawn attention for regulating oligonucleotide hybridization with light for photopharmacological applications. The nucleobase moiety provides attractive interaction for hybridization, whereas the photochromic moiety can alter the interaction upon irradiation due to conformational changes. Herein we report the synthesis of 2‐phenyldiazenyl‐substituted 2’‐deoxyadenosine (dAAzo) and 2’‐deoxyguanosine (dGAzo) and investigate their influence in a DNA context by UV/Vis absorption, fluorescence and CD spectroscopies. For comparison, the literature‐known azobenzene C‐nucleoside DNAzo was used as a reference system. It could be shown that photochromic purines improve overall hybridization affinity compared to azobenzene C‐nucleosides. In particular, 2’‐deoxyadenosine analogue dAAzo increases melting temperatures by 7.5 °C in the favored trans state with 86 % of the switching efficiency of the reference system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.