Abstract

AbstractRecently, photochromic derivatives of nucleobases have drawn attention for regulating oligonucleotide hybridization with light for photopharmacological applications. The nucleobase moiety provides attractive interaction for hybridization, whereas the photochromic moiety can alter the interaction upon irradiation due to conformational changes. Herein we report the synthesis of 2‐phenyldiazenyl‐substituted 2’‐deoxyadenosine (dAAzo) and 2’‐deoxyguanosine (dGAzo) and investigate their influence in a DNA context by UV/Vis absorption, fluorescence and CD spectroscopies. For comparison, the literature‐known azobenzene C‐nucleoside DNAzo was used as a reference system. It could be shown that photochromic purines improve overall hybridization affinity compared to azobenzene C‐nucleosides. In particular, 2’‐deoxyadenosine analogue dAAzo increases melting temperatures by 7.5 °C in the favored trans state with 86 % of the switching efficiency of the reference system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call