Abstract

We demonstrated the generality of a strategy for photoswitching the activity of functional oligonucleotides by modulating their topological structure. Our strategy was proved to be versatile because it can be used to photoregulate functional oligonucleotides, e.g., ribozymes and DNAzymes, which have two binding arms and a catalytic loop. Repeated reversible photoregulation of RNA cleavage by a ribozyme or a DNAzyme was achieved by attaching two photoresponsive strands, artificial oligomers involving azobenzene moieties and nucleobases capable of forming a duplex as the supraphotoswitch. Individual strands were attached to the 3' and 5' ends of a RNA-cleavage oligonucleotide. Thus, the topological structure of the ribozyme or DNAzyme was constrained, and RNA cleavage was greatly suppressed when the supraphotoswitch duplex formed (OFF state). In contrast, RNA cleavage resumed when the supraphotoswitch duplex dissociated (ON state). Light irradiation was used to repeatedly switch the supraphotoswitch between the ON and OFF states so that RNA cleavage activity could be efficiently photoregulated. Analysis of the regulatory mechanism showed that topological constraints suppressed the RNA cleavage by causing both structural changes at the catalytic site and lower binding affinity between the RNA substrates and the functional oligonucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.