Abstract

The hyphenation of HPLC with its high separation ability and ICP-MS with its excellent sensitivity, allows the analysis of Pt drugs in biological samples at the low nanomolar concentration levels. On the other hand, LC-MS provides molecular structural confirmation for each species. Using a combination of these methods, we have investigated the speciation of the photoactive anticancer complex diazido Pt(IV) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] (FM-190) in aqueous solution and biofluids at single-digit nanomolar concentrations before and after irradiation. FM-190 displays high stability in human blood plasma in the dark at 37 °C. Interestingly, the polyhydroxido species [{PtIV(py)2(OH)4} + Na]+ and [{PtIV(py)2(N3)(OH)3} + Na]+ resulting from the replacement of azido ligands, as determined by LC-MS, were the major products after photoirradiation of FM-190 with blue light (463 nm). This finding suggests that such photosubstituted Pt(IV) tri- and tetra-hydroxido species could play important roles in the biological activity of this anticancer complex. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations show that these Pt(IV) species arising from FM-190 in aqueous media can be formed directly from a singlet excited state. The results highlight how speciation analysis (metallomics) can shed light on photoactivation pathways for FM-190 and formation of potential excited-state pharmacophores. The ability to detect and identify photoproducts at physiologically-relevant concentrations in cells and tissues will be important for preclinical development studies of this class of photoactivatable platinum drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.