Abstract

The present work reviews a series of recent first-principles studies devoted to the description of the interaction of light and strain in ferroelectric and multiferroic materials. Specifically, the modelling schemes used in these works to describe the so-called photostriction and elasto-optic effects are presented, in addition to the results and analysis provided by these ab initio calculations. In particular, the large importance of the piezoelectric effect in the polar direction in the photostriction of ferroelectric materials is stressed. Similarly, the occurrence of low-symmetry phases in lead titanate thin films under tensile strain is demonstrated to result in large elasto-optic constants. In addition, first-principle calculations allow to gain microscopic knowledge of subtle effects, for instance in the case of photostriction, where the deformation potential effect in directions perpendicular to the polar axis is shown to be almost as significant as the piezoelectric effect. As a result, the numerical methods presented here could propel the design of efficient opto-mechanical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call