Abstract

The photophysics of the pyrene radical cation, a polycyclic aromatic hydrocarbon (PAH) and a possible source of diffuse interstellar bands (DIBs), is investigated by means of hybrid molecular mechanics-valence bond (MMVB) force field and multiconfigurational CASSCF and CASPT2 ab initio methods. Potential energy surfaces of the first three electronic states D 0, D 1, and D 2 are calculated. MMVB geometry optimizations are carried out for the first time on a cationic system; the results show good agreement with CASSCF optimized structures, for minima and conical intersections, and errors in the energy gaps are no larger than those found in our previous studies of neutral systems. The presence of two easily accessible sloped D 1/D 2 and D 0/D 1 conical intersections suggests the pyrene radical cation is highly photostable, with ultrafast nonradiative decay back to the initial ground state geometry predicted via a mechanism similar to the one found in the naphthalene radical cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.