Abstract

AbstractThe photostabilization of wood surfaces is desirable to enhance the life of wood under exterior use and to improve the performance of clear coatings on wood surfaces. Chemical modification of wood has been found effective in upgrading properties such as biological durability and dimensional stability and has been suggested as a potential way for inducing photostability on wood surfaces. In this study, the photostability of chemically modified wood was assessed under accelerated weathering conditions. Wood specimens of Pinus roxburghii (Chir pine) were esterified with benzoyl chloride to 19.5 wt % gain and exposed to a xenon arc light source in a Weather‐O‐Meter for different periods ranging from 0 to 500 h. The irradiated samples were analyzed for color changes and chemical changes. The analysis of color changes in wood surfaces by ultraviolet–visible irradiation was carried out with a color measuring (CIELAB) system, and chemical changes were characterized with fluorescence and Fourier transform infrared spectroscopy. The esterification of wood by benzoyl chloride suppressed the color changes (photodiscoloration) due to irradiation. Modification also reduced the lignin degradation and generation of carbonyl groups on the surface of the irradiated wood. The fluorescence emission spectra of irradiated unmodified wood showed a large reduction in intensity and a large redshift in the emission maximum, whereas modified wood showed only a small change in fluorescence intensity on irradiation. The results show that the esterification of wood with benzoyl chloride was effective for the photostabilization of the wood polymers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call