Abstract

The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated. The fluorescence lifetime, blinking phenomenon, and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied. The second-order correlation function at zero delay time is much smaller than 0.1, which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source. The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed. The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.