Abstract
The stability of the optical properties and the generation efficiency of singlet oxygen of a solidphase photosensitizer based on fullerene in an aqueous suspension subjected to prolonged intense irradiation with visible light are studied in comparison with a photosensitizer based on methylene blue in an aqueous solution. Changes in the absorption spectra show that, as a result of 20-min irradiation, the content of fullerene decreases by 2% from its initial value, while that of methylene blue decreases by 19%. In both cases, the dynamics of the decrease in the photosensitizing ability of the photosensitizers in the course of their irradiation correlates with the changes in their spectra, but the magnitude of this decrease in the case of the solid-phase photosensitizer is greater than the magnitude of its spectral changes because of the surface nature of the photosensitization process. The study of the absorption spectra of fullerene coatings shows that their irradiation in water or in air causes the same photodegradation of fullerene. At the same time, studies with the help of the electron spin resonance (ESR) technique reveal differences in the nature of processes undergone by fullerene in water and in air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.